Tutors’ Experiences in Using Explicit Strategies in a
Problem-Based Learning Introductory Programming Course

Olivier Goletti*
ICTEAM/INGI, UCLouvain
Louvain-la-Neuve, Belgium
olivier.goletti@uclouvain.be

ABSTRACT

In programming education, explicit strategies are gaining traction.
The reason for this study was to improve an introductory program-
ming course based on a problem-based methodology, by using more
explicit programming strategies. After analysing a previous run of
this course for first year undergraduate students, we concluded that
such strategies could improve learning transfer for students across
the different weeks of the semester. We introduced four instruc-
tional strategies to tutors with close to no pedagogical background:
explicit tracing, subgoal labeled worked examples, Parsons prob-
lems and explicit problem solving. These explicit programming
strategies aim to decrease cognitive load. Tutors tested these four
strategies in the course. Our goal was to explore how tutors could
benefit in their tutoring from explicit strategies. Interviews with
the tutors show that the easiest and most effective of the tested
strategies were best used. For the more elaborate strategies, more
time should be devoted to explain and model them or they can be
misunderstood and misapplied. We conclude that four criteria are
key to successfully using an explicit strategy: easy to understand,
straightforward to apply, useful on the long term and supported by
literature.

CCS CONCEPTS

« Social and professional topics — Computer science educa-
tion; CS1.

KEYWORDS

explicit programming strategies; cognitive load; problem-based
learning

ACM Reference Format:

Olivier Goletti, Kim Mens, and Felienne Hermans. 2021. Tutors’ Experi-
ences in Using Explicit Strategies in a Problem-Based Learning Introductory
Programming Course. In Proceedings of the 2021 ACM Conference on In-
novation and Technology in Computer Science Education (ITiCSE °21), June
26-July 1, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3430665.3456348

*Also with LIACS, Leiden University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE ’21, June 26-July 1, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8214-4/21/06...$15.00
https://doi.org/10.1145/3430665.3456348

Kim Mens
ICTEAM/INGI, UCLouvain
Louvain-la-Neuve, Belgium

kim.mens@uclouvain.be

Felienne Hermans
LIACS, Leiden University
Leiden, The Netherlands

ffj.hermans@liacs.leidenuniv.nl

1 INTRODUCTION

Introductory programming courses are increasingly taught using
problem-based and project-based learning methodologies (PBL) [23].
At UCLouvain, an introductory bachelor computer science (CS1)
course given to the future civil engineers and bachelors in CS, is
taught following a methodology inspired by PBL. In this CS1 course,
tutors facilitate students’ work during lab sessions. Tutors are more
senior students who follow a small pedagogical training on the PBL
strategy used in the course. In this study we aim to explore how
tutors could benefit in their tutoring from explicit program-
ming strategies. LaToza et al. [17] define an explicit programming
strategy as: a “human-executable procedure for accomplishing a pro-
gramming task”. Prior work has shown that the strategies we use
in this study are effective [8, 21, 25, 31]. Therefore, we focus our
study instead on tutors to assess how comfortable they are with
adopting new instructional strategies.
These are the research questions we are interested in:

RQ1 How did tutors apply and adapt the strategies?

RQ2 What strategies did tutors prefer and why?

RQ3 What do the tutors think about using explicit program-
ming strategies?

Our study focuses on four strategies from research literature: 1)
Explicit tracing [31], 2) Subgoal-labeled worked examples [25],
3) Parsons problems [8] and 4) Explicit problem solving [21].
We conducted this study by following the tutors in weekly focus
groups and interviewing them at the end of the semester.

2 BACKGROUND

This section presents the theoretical concepts of cognitive load the-
ory and learning transfer based on which we analysed the problem-
based methodology of the course and selected the explicit program-
ming strategies we use.

Cognitive Load Theory. Cognitive load theory (CLT) [30] is an in-
structional theory based on human cognitive architecture. CLT
assumes a limited working memory. The impact of CLT on instruc-
tion design is that one should try to reduce load on the working
memory when teaching new material. Too much context or un-
necessary information when teaching increases the cognitive load
on the learner. The four strategies in this study follow the instruc-
tional idea of CLT: minimizing cognitive load and helping to apply
generic skills [29], for example through the use of worked examples,
automatizing rules or using external representations [14].

Learning Transfer. Learning transfer can be defined as reusing pre-
viously learned knowledge in a new context [3]. It is important to
note that learning transfer is an active process. Students attempting

https://doi.org/10.1145/3430665.3456348
https://doi.org/10.1145/3430665.3456348

to transfer benefit from prompts [3]. They can also transfer better if
they are conscious that they are attempting to do so. This is typical
in a problem-solving situation. The instructional implication of this
is that recall strategies, which invite a learner to recall previously
learned knowledge and solutions to similar problems, can facilitate
learning transfer.

Problem-Based Learning. Problem-based learning (PBL) is a student-
centered instructional methodology where students work in small
groups on real life problems introducing new learning material [1].
The learning process is mostly self-directed: by solving problems
and answering questions, they discover the theory by reading and
studying by themselves. PBL has sometimes been criticized as an
active teaching approach, because the minimal guidance it provides
is in contradiction with CLT principles [15]. Other works nuance
this critique by asserting that PBL does include scaffolding and
guidance provided among others by tutors [11, 27].

Explicit Programming Strategies. Explicit programming strategies
are gaining traction lately: e.g., by explicitly teaching recurring
patterns [5], or using explicit strategies for tracing [31], debug-
ging [17], code reuse [16] or problem solving [21]. Using worked
examples, subgoal-labeled material or Parsons problems as tech-
niques aiming at reducing cognitive load when learning has been
studied in numerous recent studies [8, 24-26].

The four strategies explored in our study were conceived to be
either recall strategies or to be explicit in the sense that, once auto-
mated, they will reduce the cognitive load associated with a specific
task. We found them to be effective based on previous empirical
results [8, 21, 25, 31]. These explicit programming strategies can be
either a list of steps to reproduce, or meta-cognitive hints to help
recall some specific technique. The goal of this paper is to explore
how easily the selected strategies can be used by tutors that have
close to no pedagogical background.

3 METHODOLOGY

The goal of this paper is to explore how tutors benefit from using
explicit programming strategies in their instructional practice.

3.1 The CS1 Course at UCLouvain

The introductory programming course follows a methodology in-
spired by PBL, “mostly to enhance deep and meaningful learning, to
promote high-level capabilities, to develop student motivation and au-
tonomy, and to promote team work” [9]. The thirteen weeks course is
followed by all first year undergraduate students majoring in com-
puter science and civil engineering. One of the main pillars of the
PBL methodology used in this course is tutoring. Although PBL has
been criticized by proponents of CLT (cf. Section 2), in a previous
run of this course, it was shown to be effective [10]. Nevertheless,
in our current analysis of this CS1 course we investigate whether
tutors could benefit from more explicit programming strategies.
The output of our analysis is discussed after its structure.

Course Structure. UCLouvain’s CS1 course is organised around
small weekly projects called missions. Each mission introduces some
new programming concepts and covers a theme. For example, the
“strings and lists” theme is about DNA sequences; in the realisation
phase for that mission students have to develop help methods for

calculating a Hamming distance between sequences. The course
uses Python and covers imperative programming and introduces
programming with objects!.

Each week starts with a one hour lecture. Students then have
to read the theory syllabus and answer multiple choice and open
questions provided in the exercise syllabus. During tutored ses-
sions, students work in their usual group of six students and each
tutor is assigned to a room of four groups. During a first one hour
tutored session, the prepared answers to the exercises are shared
and discussed. The tutor helps organizing the discussions, sending
students to the blackboard. Students then have two days to submit
their solution to a small weekly project. The sum-up session is the
second and last tutored session of the week. During this one hour
session, the tutor provides feedback on the submissions, discussing
common mistakes and pitfalls the students have ran into. A sum-
mary exercise covering the concepts of the week is then solved by
the room, before the cycle starts over again.

Course Analysis. A thorough inspection of the course material,
based on the learning transfer model of Bracke [2], yielded three
propositions to improve the course:

P1. The organisation of the learning objectives should
be made more apparent throughout the entire course.
P1 is related to literature on explicit direct instruction and
the way Hollingsworth et al. suggest to organize lessons [12].

P2. Transfer opportunities should be pointed at before-
hand in order to prepare the learner to recognize future
situations in which (s)he could recall previous knowledge.

P3. More explicit recall strategies should be proposed in
the course to help retrieve known bits of knowledge in
order to apply them to solve new similar situations.

P2 and P3 are in accordance with what CLT prescribes about in-
structional design. It promotes explicit strategies in the sense that
we must automate content-related knowledge and so, familiarise
learners to new content and enable them to transfer knowledge.

3.2 Four Evidenced-based Strategies

Our analysis of the course and the three propositions above led
us to look for effective explicit programming strategies and use
them in this research. In this section, we present each strategy and
justify how they relate to our three propositions P1, P2 and P3:
(1) Explicit Tracing [31] supplemented with the memory repre-
sentation for more complex structures [7]; (2) Subgoal labeled
worked examples [25]; (3) Parsons problems [8]; (4) Explicit
problem-solving [21].

Explicit Tracing. Tracing code means executing a program in one’s
head or by hand. Research shows tracing is an important skill to
read and write code, and that tracing is hard for novices [19].

The explicit tracing strategy we use is inspired by Xie et al. [31],
who show a strategy that helps students trace programs while
updating a memory table. Each variable encountered in the code has
a line in the table and their values are systematically updated when
executing the instructions of a given program. We also included
the graphical representations for tracing arrays, lists and objects
from Dragon et al. [7].

!https://syllabus-interactif.info.ucl.ac.be/index/info1-theory

https://syllabus-interactif.info.ucl.ac.be/index/info1-theory

Explicit tracing is in alignment with CLT because it automates
the process of executing code and uses external representations to
lower cognitive load. It addresses P3 because it is an explicit recall
strategy that will remind students how to execute code properly.

Subgoal Labeled Worked Examples (SLWE). “Worked examples demon-
strate how to apply an otherwise abstract procedure to a concrete
problem” [25]. Subgoal labels highlight the steps of a generic prob-
lem solving procedure. The idea of explicitly teaching the steps of
recurring patterns in the resolution of many more or less similar
problems is not new [6, 28]. This is the goal of SLWEs. Margulieux
et al. [25] combined the idea of worked examples with labeling the
steps behind common code structures. Subgoal labels identify those
generic steps in order to emphasize them. The steps suggested by
the labels can be reused when reading or writing similar code. Mar-
gulieux et al. provided SLWEs to students with increasing levels of
difficulty, interleaved with practice problems.

SLWE:s are linked to proposition P2 and the promotion of transfer
opportunities. They also aim to automate the recognition of patterns
like proposed in P3. Worked examples are also a strategy identified
by CLT proponents to lower cognitive load for learners.

Parsons Problems. Parsons problems consist of mixing lines of a
code broken into subgoals or even in single lines. The idea is for
the student to solve an exercise by reordering all the pieces of the
solution that have been mixed. Those puzzles are more engaging
for students [8]. The difficulty can be adjusted by adding distractors,
unnecessary lines that have to be left out. Distractors often reflect
common mistakes that novices can make. A distractor can be paired
with its corresponding correct line, for example using the same
label. Using Parsons problems lead to the same amount of learning
as fixing or writing the same code while taking less time [8]. The
idea of reordering lines of code instead of writing them is heavily
inspired by CLT and diminishes cognitive load. It is a way to practice
the recognition of patterns shown in worked examples, and is
therefore linked to our proposition P3.

Explicit Problem Solving. The fourth strategy concerns metacogni-
tion in problem solving. By explicitly giving students a list of steps
to follow and corresponding reflection questions, the aim is to help
them self-regulate the process of solving a problem. It is inspired
by a study by Loksa et al. [21] in which the authors identified six
steps to follow: Reinterpret problem statement; Search for analo-
gous problems; Search for solutions; Evaluate a potential solution;
Implement a solution and Evaluate implemented solution.

Explicit problem solving consists of explaining the six steps to
the students, giving them a handout as a reminder and asking them
in which phase there are when they ask for help in a lab session.

This strategy has as main goal to automate the self-regulation
that will help a learner take advantage of metacognition. It is a way
to diminish the difficulty of using higher level cognitive strategies
in an unfamiliar context as suggested by CLT. It is also done in an
explicit way like in proposition P3.

3.3 Study Setup

The goal of this paper is to understand how tutors could incor-
porate explicit strategies in their tutoring and what were their
thoughts on the use of explicit strategies. Therefore we had to find

those tutors, explain the strategies to them and interview them.
This section details our methodology.

To the twenty-five tutors of our CS1 course, we distributed a
survey with questions on how they saw their role as tutors for the
course. Twelve responded and four among them accepted to test
our explicit programming strategies. We met those four tutors once
a week nearly each week of the semester. During these twenty-
minute meetings, the four tutors and the first author would discuss
the previously seen strategies. We discussed feedback, adaptation,
best practices, interrogations, etc.

Since tutors had little pedagogical experience, we introduced the
strategies to the tutors gradually. This was done to not overwhelm
them with too much information at once. We also thought it would
give them more time to fully focus on each strategy at a time. Every
two other weeks, the first author proposed a new strategy, gave
the paper it was taken from to the tutors, presented its motivations
and objectives, explained how to apply it, gave a usage example
and answered tutors questions.

Tutors were encouraged to use these strategies with their stu-
dents and to modify and adapt them as needed. Regular feedback
through the weekly meetings allowed us to know what tutors tested
and how they adapted the initial proposed strategy. This approach
was preferred instead of a more rigid "follow these steps" approach
because we trust them in the end to “weave it all together into
something that works in the classroom” [18].

At the end of the semester, each of the tutors was interviewed for
about one hour in a semi-structured way. Questions were prepared
by the first author to not miss any specific point during the inter-
view, as proposed by Kaufmann [13]. In order to answer RQ1 on
their use and adaptation of the strategies, we asked more detailed
questions on what they recalled of each of the four strategies, how
and when they applied it and its pros and cons. To answer RQ2 on
the tutors preference, we asked them to compare the strategies and
rate them according to some criteria such as ease of application or
effectiveness. The interview also included a few questions on their
experience as a tutor, what changed in their practice throughout
the semester and their thoughts on explicit methodologies. These
questions aimed at answering RQ3 on their views on explicit strate-
gies. The weekly meetings were recorded and were used along with
the interviews of the tutors as a source for the qualitative aspect of
this study. The transcripts of the interviews were coded following
the method proposed by Creswell [4]. We used codes emerging
from the interviews, as well as codes induced by the themes of the
different parts of the interview. The first interview was coded by
two researchers and then the first author coded the three other
interviews. In total, we coded 431 quotes from the interviews and
the weekly meetings. The codes were then regrouped in categories
that we used to answer our three research questions.

4 RESULTS

This section presents the results of the analysis of the interviews
that we transcribed and coded. We answer each of our three research
questions based on our coding of the interview material. Since the
interviews were taken in French, the quotes provided below are
translations provided by the first author of this paper.

4.1 Tutor’s Use of the Four Strategies

In this section we analyse what the tutors reported on their use of
each of the four strategies, by order in which they were introduced
to the tutors. For each strategy, the categories are treated in order
of number of coded quotes given in brackets. When no quote was
coded in a category, it is left out. The final coded categories were:
Pros for tutors: seen as a benefit of using a strategy; Pros for
students: seen by tutors as helping the students; Limitations
hindered students when using a strategy; Application difficulties
hindered tutors; Suggestions made by tutors to improve a strategy.

4.1.1 Explicit Tracing. This strategy was the favorite of all four
tutors. For tutors, it is easy to understand, simple to apply. It is
useful for all students, simple to use, and helps code comprehension,
testing and debugging code. Tutors considered explicit tracing as
reassuring for the students. T4 said tracing would help later in their
curriculum. Tutors also stated it reduces effectively the mental
load for students. Tutors regarded the strategy as unfit for longer
executions. They made some suggestions to improve this strategy.

Pros for students (38). Tracing was mostly used to help students
identify where they misunderstood a statement or made an incor-
rect assumption. T3 said: “Students can figure out by executing step
by step that what they think is different from the result of the exe-
cution. By forcing oneself to write and trace, a student can come by
himself to a conflict and then to the correction of the code.”

Tutors agreed it really helped students. For example T2 said:
“The idea is to write it instead of keeping it all in their head”.

Pros for tutors (25). Tracing was compared with debugging and
thus felt familiar to tutors. T4 was shocked that it wasn’t explicitly
taught to students: ‘T thought tracing code was already taught in
[this course]... I think it is very useful to trace at the beginning.”

This strategy was the easiest to apply with the best results. For
example, T1 described how the strategy helps students: “It’s the
strategy I used the most [...] At first, one doesn’t have the proper
methodology to trace code. We just try to remember all variables and
we just go too fast. But with the table we take our time, we update it
after each statement, we calculate each expression separately, I think
it helped them. I just did a reminder on this at Tuesday’s lab because
they asked me [...] It’s just that, it is clear and it works well [...] They
seemed to say they would use it during the exam.”

Limitations (12). The four tutors were unanimous to say that
tracing takes a lot of time, especially for longer code.

Suggestions (7). Tutors suggested how to improve explicit tracing.
E.g., one proposed to use several students "chained" to execute sep-
arate parts of the code or nested function calls. Another adaptation
was to trace only chosen variables of interest in a program.

4.1.2 Subgoal Labeled Worked Examples. Tutors regarded subgoal
labeled worked examples (SLWEs) more complicated to apply than
the previous strategy. They had a hard time applying this strategy
properly. They said they understood the underlying ideas but that
it needed preparation and memorizing of the proper labels.

Application difficulties (20). Although tutors saw that identifying
the subgoals for the students was helpful, they said it was difficult
to articulate the difference between context steps and generic steps.

Tutors could not relate to a similar strategy emphasizing the gener-
ality of the steps to write a loop. It was more implicit for the tutors
so the strategy seemed “overly theoretical” (T3).

Tutors fell into a live attempt to find the proper steps to use a
specific construct if they did not stick to the provided labels. Such
a live exercise is difficult and is a reason why the strategy was
designed [25]. T1 said on this topic: “Well, if it’s not explicit for us,
it’s difficult to explain it for the students... We know all that implicitly.
But, it’s never easy to explain like that if we haven’t taken the time to
sit down and say when I do a loop, step 1 is that, then that, etc.”

Because SLWEs need preparation and memorising, it demanded
time from the tutors. This was a major hindrance in their first at-
tempt at applying the strategy. Another difficulty was that subgoals
were provided for many different constructs and are different when
reading or writing. This led tutors to adapt the strategy by doing it
orally and not as explicitly as proposed in the paper.

Limitations (7). A limitation mentioned by two tutors is that
students would expect the solution to be given to them if the tutor
often wrote it on the board to highlight the different subgoals.

Pros for students (7). Three tutors used the strategy and found
that it was particularly useful for students who had more difficulties
starting from a blank page. The idea of showing an example was
fairly well adopted, especially during the introduction of a new
concept. Tutors saw it as presenting a plan that students could refer
to later on but stressed that one example is not enough and that
balance should be found to avoid students expecting answers to be
given. For example, T2 said: “Tt’s good to do this for the first time
when a concept is discussed to show them how to solve a new type of
exercise... It saves time rather than floundering... It provides them a
well-solved reference exercise that shows the steps.”

4.1.3 Parsons Problems. This was the second favourite strategy of
the tutors. They liked it because it was engaging for students of all
levels. Another main advantage was that students could see more
examples in less time. Nevertheless, tutors said it required time to
prepare and it was not always clear when to use it.

Pros for students (28). The importance of good paired distractors
was stressed since it forced students to justify their choice. One
tutor tried unpaired distractors, but found that this was too hard
for the students since they would try to fit all the lines of code in
one solution. T3 describes its use: “Line by line, without indentation,
with distractors. To stimulate discussions in certain structures. For
example to see if an else is mandatory or not.”

Tutors highlighted the benefit of Parsons problems to enable
students to see more examples of solved programs in a short time,
as reported in the original study [8]. E.g., T1 said “[students are]
really just thinking about the meaning. That way, they could see more
different examples since they don’t have to waste time writing. And
learn faster, well that’s the objective of the method.”

It was motivating for student not having to write all exercises by
themselves. It mitigated the blank page syndrome. Tutors reported
that students were more involved, more active and enjoyed the
strategy; even those students who had more difficulties.

Limitations (10). Nevertheless all tutors agreed that Parsons prob-
lems, when done on paper, required time and preparation.

Application difficulties (10). The main difficulty for tutors was
to identify exercises that would benefit from Parsons problems.
Two tutors said they did not know when to use it and would have
preferred to experience it by themselves first, to have more practice.

Suggestions (8). Some suggestions were made for Parsons prob-
lems. T3 suggested it could be used as a way of assessing student
knowledge or diagnosing if a mistake is systematic, by giving them
distractors on a specific misconception. T3 said that “[with this
strategy] we could see if we used a variable before assigning it or if
we swapped two lines of code if it is systematic or a distraction error.”

Tutors also said that an automatic online solution might be more
usable, but then they would lose the opportunity of discussion with
and between the students in the classroom.

Pros for tutors (6). In order to properly invent a new Parsons
exercise, T2 said tutors need to “know how to trap students. To make
good distractors, you have to know the corner cases that make a
program not work” and that he liked that. T3 said that it allowed
him to put more or less difficulty in an exercise.

4.1.4 Explicit Problem Solving. This strategy was more controver-
sial. While two tutors rated it as difficult to apply and understand,
the other two used it successfully. It was straightforward to use for
the students but difficult to understand because it was meta and at
the same time described obvious steps of problem solving.

Pros for students (19). As with previous strategies, tutors noted
that this strategy helped students who did not know where to begin.
T3 said: “some students need a course of action or they don’t know
what to do.”

The strategy was helpful to students. It needed to be applied
systematically and if students didn’t stick to it, they would burn
steps and make mistakes. Self-regulation is difficult for students [20].
We can see the meta-cognitive impact when T2 said: “They can see
that it works when I ask them questions but cannot ask the question
themselves.” or when T1 said: “It’s a bit like trying to work as if you
are working in a group but alone.”

Tutors found this strategy complementary to the second strategy
as they regarded that one as about translating a natural language
resolution to code and this one about the whole process, starting
from reinterpreting the statement in natural language.

This recall strategy especially matches a need identified in our
analysis and was seen as such by T1: “If you remember something
that worked, it’s very easy to reapply it. And taking the time to
explicitly ask ‘OK have I already done something that looks like
that?” Sometimes it’s quite silly but if you think about it for two or
three minutes you find that it is the case.”

Limitations (11). Some difficulties were also mentioned. Tutors
found it difficult for students to identify similar problems, especially
when seeing so much new material in the course. But even tutors
often only saw similar problems in a very narrow sense.

Application difficulties (9). Even though tutors saw the need to
make the steps of problem solving explicit, they found it sometimes
too obvious and so did students. Some tutors reported that they
were not sure if it would help. They had to be convinced of the
usefulness of a strategy before using it, as T4 stated: ‘T didn’t test it
for lack of time and because I didn’t really see the point.”

4.2 ROQ1: Use and adaptation of the strategies

The overall impression is that tutors found the strategies useful
and effective. Tutors used a strategy more easily if they could un-
derstand the motivation behind it. They would reuse a strategy
when it helped the students, didn’t take too much time and when
it increased the students’ motivation. The tutors did not hesitate to
test the strategies. They adapted it to their own practice or to what
they understood. Still, they sometimes reported not being sure on
when to use a strategy and a need for more practice before using it
with the students. T4 even said that for one strategy they felt lost:
“Do not just leave the tutors facing the paper because there is quickly
a way to get lost and make mistakes.”

Tutors really need to understand the goal of a strategy to be con-
vinced it has value and to use it properly. Otherwise, they would
have a tendency to focus on the context and not on the general prin-
ciple a strategy emphasises. Especially with more abstract strategies
like the subgoal labeled worked examples, they needed to under-
stand them well. Otherwise, they would struggle to find the proper
labels on the spot, which is kind of the main reason for using that
strategy.

A difficulty encountered was that lack of time and preparation
were a brake on instructional changes. It is known that TA’s and
by extensions also tutors suffer from class management issues [22].
It is well possible that in this case, since they had little pedagogical
background and since three of them were tutoring this course for
the first time, it hampered their pedagogical confidence and hence
the degree to which they could adapt instructional experiments.

4.3 ROQ2: Preferred Strategies

When comparing strategies, tutors found that explicit tracing was
the easiest to understand and apply as well as the most effective
one. Using Parsons problems was considered easy and effective
even though it took more time to prepare. The third most effective
strategy was explicit problem solving according to tutors and it was
also third easiest to understand. Finally, subgoal labeled worked
examples was the most difficult to understand and least effective
according to the tutors.

The strategies seen as more effective were not necessarily easier
to apply. For example Parsons’ problems was difficult to apply
according to tutors. They liked to see that a strategy was useful.
Even though some strategies were seen as broadly applicable, tutors
mainly saw them as useful for students in difficulty. This was a
major motivation for tutors to try the strategies.

Overall, we can say that when adopting strategies tutors pre-
ferred those that were easy to understand, straightforward to apply,
useful for students on the long term and supported by literature.

4.4 RQ3: On Explicit Programming Strategies

Tutors found the explicit nature of the strategies effective and “Jess
demanding for the students” (T1). To counterbalance explicit strate-
gies, they said that students still need occasions to explore strategies
by themselves and figure out what works best for them. They said
that explicit strategies should be shown especially when introduc-
ing new material but that students should then have some less
guided time to try them out and adopt or adapt them. T2 said: ‘T
think it is good to do things that are very explicit for a student, to

show him how to do an exercise properly and that he can adapt it for
himself.”

Two tutors also feared that students would not search by them-
selves anymore because of explicit strategies. T1 said: “The disad-
vantage is that they may not search by themselves, it will be much
less personal. It will be like that. Because we said it works. But not
because they have tested it and ... Maybe there are other methods that
work well and they may never find out on their own.”

The tutors seem to agree that more open exercises are also benefi-
cial for students and that less explicit methods would force students
to learn how to "figure it out". They clearly associate implicit with
letting the students work it out by themselves, like T2: “Less explicit,
it is rather when they have more freedom, when we give them the
statement ... and we do not give a course of action... It is good from
time to time to leave the students a little more on their own.”

To summarize, tutors view explicit strategies as an effective way
to teach and automate good practices for students. But they have a
more balanced view than expected on this topic. Indeed, for most
of the tutors, an inquiry-based, less guided methodology still has
its place in the course. This might be due to their own experience
of the course and also by their feeling that students need to learn
to search by themselves.

4.5 Discussion

The goal of this paper was to explore how tutors can benefit from
using explicit programming strategies. In this section, we discuss
two noteworthy aspects that were not covered by our research
questions but that have been reported by the tutors: the benefits
of the weekly meetings and the problem of students to translate a
problem statement into a program.

First, tutors reported that they liked the weekly meetings to
discuss the different strategies. This allowed them to see how they
were used by the others and be encouraged to try them out. This
setup was inspired by the idea of communities of practice. Having
regular meetings allowed learners to hear and learn from each
other. T1 said: “Seeing each other every week, ... we realized for
certain strategies that it was easier to use than we thought, so that
was nice.”

Second, we want to come back to the comments made by all four
tutors when speaking about the second strategy (subgoal labeled
worked examples). They mentioned that this strategy was good
to translate from a natural language solution to code by using the
labels for writing constructs. The students mostly struggled with
the step before however, which was reinterpreting the problem
statement into a proper solution. For example, T4 said: ‘Tt is useful
if you already know the program that needs to be built. The problem
is more knowing that you have to make a loop.” The tutors men-
tioned that the fourth strategy on explicit problem solving helped
the students with this first step. So maybe, just introducing this
explicit problem solving strategy first would suffice. However, extra
attention needs to be put on giving the right tools and strategies to
tutors to help them explain to students how to express or translate
a problem statement into natural language.

4.6 Threats to Validity

A first threat to validity of this study is the small amount of tutors
who participated. But our main goal was to explore tutors’ use of

explicit programming strategies and to discover some directions for
follow-up research. It would for example be interesting to take the
proposed criteria for a strategy and test them on more strategies
and more tutors. A second threat is in the way the strategies were
selected. Other interesting strategies could exist that may lead
to other results. In particular, we might want to find an explicit
strategy helping students to translate a problem statement into a
natural language description of the solution. Finally, tutors were
encouraged to use the strategies but were not forced to do so. One
can imagine that a more controlled experiment could lead to more
quantifiable results on whether a strategy is indeed properly used
and adopted by the tutors.

5 CONCLUSION

In this exploratory study, we studied how four tutors used and
experienced the use of four explicit strategies in a CS1 university
course. The strategies were chosen because they were shown to be
effective and explicit, and in accordance with the three propositions
that were drawn from our analysis of the course and following
instructional propositions made by cognitive load theory.

The four strategies were gradually presented to and tested by the
tutors in the thirteen week course during which regular meetings
were held. At the end of the semester interviews were conducted,
transcribed and analysed to answer three research questions. We
observed that the tutors liked these new instructional strategies
even though it was sometimes difficult for them to use them prop-
erly. They neither had sufficient time to prepare their lab sessions
with these strategies nor the pedagogical experience to be confident
enough to try more complicated strategies.

Based upon our interview analysis, we propose four criteria for a
strategy to be more easily adopted by tutors with little pedagogical
background. A strategy has to be easy to understand, straightfor-
ward to apply, useful on the long term and supported by literature.
Tutors consider explicit strategies effective and useful. In particular,
tutors preferred explicit tracing according to these criteria. Nev-
ertheless, they believe a trade-off is to be found regarding more
inquiry-based strategies so that students are left the opportunity to
find out by themselves the best strategies for them to use.

We believe our results can be generalised to other introduc-
tory programming courses with a similar setup. In particular, since
problem-based learning and tutoring are widely adopted in CS
courses, our work could support them using more explicit pro-
gramming strategies. Our research points in the direction of more
actionable materials that could be given to tutors. A short training
with the highlights of a strategy and an example of how and when
to use it properly could help them a lot.

This exploratory study still leaves a lot of research questions
unanswered. A first question is whether trained tutors will continue
to use the strategies. Since they are students themselves, will they
use them in their own curriculum? Another question would be
to study the impact on students and their views on the strategies.
Does it help them? (How) do they use and adapt them? Finally, a
more quantitative study could be designed as a controlled experi-
ment where part of the students are taught by tutors who received
some training on explicit strategies and see whether this has an
observable impact on their students’ learning or grades.

REFERENCES

(1]
(2]

[3

(4]
(5]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

Howard S. Barrows. 1996. Problem-Based Learning in Medicine and beyond: A
Brief Overview. New directions for teaching and learning 1996, 68 (1996), 3-12.
Daniéle Bracke. 2004. Un Modéle Fonctionnel Du Tranfert Pour I’éducation. Presses
Université Laval, 77-106.

National Research Council. 2000. How People Learn: Brain, Mind, Experience, and
School: Expanded Edition. National Academies Press.

John W. Creswell. 2012. Analyzing and Interpreting Qualitative Data (4th ed ed.).
Pearson, Boston, Chapter 8, 236-246.

Michael De Raadt, Mark Toleman, and Richard Watson. 2007. Incorporating
Programming Strategies Explicitly into Curricula. In Proceedings of the Seventh
Baltic Sea Conference on Computing Education Research-Volume 88. Australian
Computer Society, Inc., 41-52.

Michael de Raadt, Richard Watson, and Mark Toleman. 2006. Chick Sexing
and Novice Programmers: Explicit Instruction of Problem Solving Strategies. In
Proceedings of the 8th Australasian Conference on Computing Education-Volume
52. Australian Computer Society, Inc., 55-62.

Toby Dragon and Paul E. Dickson. 2016. Memory Diagrams: A Consistant Ap-
proach Across Concepts and Languages. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New York, NY,
USA, 546-551. https://doi.org/10.1145/2839509.2844607

Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving Parsons
Problems Versus Fixing and Writing Code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research (Koli Calling ’17). ACM,
New York, NY, USA, 20-29. https://doi.org/10.1145/3141880.3141895

Mariane Frenay, Benoit Galand, Elie Milgrom, and Benoit Raucent. 2007. Project-
and Problem-Based Learning in the Engineering Curriculum at the University of
Louvain. In Management of Change. Brill Sense, 93-108.

Benoit Galand, Mariane Frenay, and Benoit Raucent. 2012. Effectiveness of
Problem-Based Learning in Engineering Education: A Comparative Study on
Three Levels of Knowledge Structure. International Journal of Engineering Edu-
cation 28, 4 (2012), 939.

Cindy E. Hmelo-Silver, Ravit Golan Duncan, and Clark A. Chinn. 2007. Scaffold-
ing and Achievement in Problem-Based and Inquiry Learning: A Response to
Kirschner, Sweller, And. Educational psychologist 42, 2 (2007), 99-107.

John R. Hollingsworth and Silvia E. Ybarra. 2017. Explicit Direct Instruction (EDI):
The Power of the Well-Crafted, Well-Taught Lesson. Corwin Press.

Jean-Claude Kaufmann. 2016. L’entretien Compréhensif-4e Ed. Armand Colin.
Paul A. Kirschner. 2002. Cognitive Load Theory: Implications of Cognitive Load
Theory on the Design of Learning. Learning and Instruction 12, 1 (Feb. 2002),
1-10. https://doi.org/10.1016/S0959-4752(01)00014-7

Paul A. Kirschner, John Sweller, and Richard E. Clark. 2006. Why Minimal
Guidance During Instruction Does Not Work: An Analysis of the Failure of Con-
structivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teach-
ing. Educational Psychologist 41, 2 (June 2006), 75-86. https://doi.org/10.1207/
515326985ep4102_1

Amy J. Ko, Thomas D. LaToza, Stephen Hull, Ellen A. Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. 2019. Teaching Explicit
Programming Strategies to Adolescents. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education (SIGCSE ’19). ACM, New York, NY,
USA, 469-475. https://doi.org/10.1145/3287324.3287371

Thomas D. LaToza, Maryam Arab, Dastyni Loksa, and Amy J. Ko. 2020. Explicit
Programming Strategies. Empirical Software Engineering 25, 4 (July 2020), 2416~
2449. https://doi.org/10.1007/s10664-020-09810- 1

(18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[31

Raymond Lister. 2016. Toward a Developmental Epistemology of Computer
Programming. In Proceedings of the 11th Workshop in Primary and Secondary
Computing Education. ACM, 5-16.

Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Mostrém, Kate Sanders, and Otto
Seppild. 2004. A Multi-National Study of Reading and Tracing Skills in Novice
Programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119-150.

Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming
Problem Solving Process and Success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research. ACM, 83-91.

Dastyni Loksa, Amy J. Ko, Will Jernigan, Alannah Oleson, Christopher J. Mendez,
and Margaret M. Burnett. 2016. Programming, Problem Solving, and Self-
Awareness: Effects of Explicit Guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 1449-1461.

Jiali Luo, Laurie Bellows, and Marilyn Grady. 2000. Classroom Management
Issues for Teaching Assistants. Research in Higher Education 41, 3 (2000), 353-383.

Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education (ITiCSE 2018
Companion). Association for Computing Machinery, New York, NY, USA, 55-106.

https://doi.org/10.1145/3293881.3295779
Lauren Margulieux, Richard Catrambone, and Mark Guzdial. 2013. Subgoal

Labeled Worked Examples Improve K-12 Teacher Performance in Computer
Programming Training. In Proceedings of the Annual Meeting of the Cognitive
Science Society, Vol. 35.

Lauren E. Margulieux, Briana B. Morrison, and Adrienne Decker. 2019. Design
and Pilot Testing of Subgoal Labeled Worked Examples for Five Core Concepts
in CS1. In Proceedings of the 2019 ACM Conference on Innovation and Technology
in Computer Science Education - ITiCSE "19. ACM Press, Aberdeen, Scotland Uk,
548-554. https://doi.org/10.1145/3304221.3319756

Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals, Con-
text, and Worked Examples in Learning Computing Problem Solving. In Proceed-
ings of the Eleventh Annual International Conference on International Computing
Education Research. ACM Press, 21-29. https://doi.org/10.1145/2787622.2787733
Henk G. Schmidt, Sofie MM Loyens, Tamara Van Gog, and Fred Paas. 2007.
Problem-Based Learning Is Compatible with Human Cognitive Architecture:
Commentary on Kirschner, Sweller, And. Educational psychologist 42, 2 (2007),
91-97.

Elliot Soloway. 1986. Learning to Program= Learning to Construct Mechanisms
and Explanations. Commun. ACM 29, 9 (1986), 850-858.

John Sweller, Paul Ayres, and Slava Kalyuga. 2011. Cognitive Load Theory, Volume
1 of Explorations in the Learning Sciences, Instructional Systems and Performance
Technologies. Springer, New York.

Jeroen J. G. van Merriénboer and John Sweller. 2005. Cognitive Load Theory and
Complex Learning: Recent Developments and Future Directions. Educational
Psychology Review 17, 2 (June 2005), 147-177. https://doi.org/10.1007/s10648-
005-3951-0

Benjamin Xie, Greg L. Nelson, and Amy J. Ko. 2018. An Explicit Strategy to Scaf-
fold Novice Program Tracing. In Proceedings of the 49th ACM Technical Symposium
on Computer Science Education. ACM, 344-349.

https://doi.org/10.1145/2839509.2844607
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1016/S0959-4752(01)00014-7
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1145/3287324.3287371
https://doi.org/10.1007/s10664-020-09810-1
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3304221.3319756
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0
https://www.researchgate.net/publication/350650657

	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 The CS1 Course at UCLouvain
	3.2 Four Evidenced-based Strategies
	3.3 Study Setup

	4 Results
	4.1 Tutor's Use of the Four Strategies
	4.2 RQ1: Use and adaptation of the strategies
	4.3 RQ2: Preferred Strategies
	4.4 RQ3: On Explicit Programming Strategies
	4.5 Discussion
	4.6 Threats to Validity

	5 Conclusion
	References

